Endothelial Glycocalyx and Cardiopulmonary Bypass.
نویسندگان
چکیده
On the outer surface of a human cell there is a dense layer of complex carbohydrates called glycocalyx, also referred to as glycans or the sugar coating on the cell surface, which is composed of a complex array of oligosaccharide and polysaccharide glucose chains that are covalently bonded to proteoglycans and lipids bound to the cell membrane surface. Studies of an intact endothelial glycocalyx layer (EGL) have revealed a number of critical functions that relate the importance of this protective layer to vascular integrity and permeability. These functions include the following: stabilization and maintenance of the vascular endothelium, an active reservoir of essential plasma proteins (i.e., albumin, antithrombin, heparan sulfate, and antioxidants), a buffer zone between the blood (formed elements) and the surface of the endothelium, and a mechanotransducer to detect changes in shear stress that facilitate vascular tone. There have been numerous review articles about the structure and function of endothelial glycocalyx over the past two decades, yet there still remains a significant knowledge gap in the perfusion literature around the importance of EGL. Perioperative fluid management and gaseous microemboli can both contribute to the damage/degradation of endothelial glycocalyx. A damaged EGL can result in systemic and myocardial edema, platelet and leukocyte adhesion, fluid extravasation, and contributes to microvascular perfusion heterogeneity. Knowledge of the importance of endothelial glycocalyx will enable clinicians to have a better understanding of the impact of gaseous microbubbles, hyperoxia, and ischemic reperfusion injury during cardiac surgery. The purpose of this article is to provide an in depth review of the EGL and how this protective barrier impacts the microcirculation, fluid homeostasis, inflammation, and edema during cardiac surgery.
منابع مشابه
Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia.
BACKGROUND The astonishing thickness of the endothelial glycocalyx, which rivals that of endothelial cells in the microvasculature, was disclosed in the last 15 years. As already demonstrated, this structure plays a key role in the regulation of inflammation and vascular permeability. METHODS AND RESULTS Two components of the glycocalyx, syndecan-1 and heparan sulfate, were measured in arteri...
متن کاملThe endothelial glycocalyx protects against myocardial edema.
Myocardial tissue edema attributable to increased microvascular fluid loss contributes to cardiac dysfunction after myocardial ischemia, cardiopulmonary bypass, hypertension, and sepsis. Recent studies suggest that carbohydrate structures on the luminal surface of microvascular endothelium are essential to prevent tissue edema. We carefully preserved these structures for visualization with elec...
متن کاملHeparin: Effects upon the Glycocalyx and Endothelial Cells.
Unfractionated heparin (UFH) is the most widely used injectable medication in the United States. UFH is a poly-dispersed, relatively impure combination of many polysaccharides known as a glycosaminoglycan. It is used as the primary anticoagulant for heart surgery as well as for active treatment of deep venous thrombosis, vascular thrombosis, stroke, and many other potentially catastrophic clott...
متن کاملINTERVENTIONAL CARDIOLOGY AND SURGERY Simvastatin attenuates leucocyte–endothelial interactions after coronary revascularisation with cardiopulmonary bypass
Objective: To investigate the effects of preoperative simvastatin treatment on leucocyte–endothelial interactions following coronary artery bypass surgery with cardiopulmonary bypass. Design: Double blind crossover study. Experiments on polymorphonuclear cells (neutrophils) were done at the end of cardiopulmonary bypass and one hour postoperatively. Endothelial P-selectin expression and neutrop...
متن کاملSimvastatin attenuates leucocyte-endothelial interactions after coronary revascularisation with cardiopulmonary bypass.
OBJECTIVE To investigate the effects of preoperative simvastatin treatment on leucocyte-endothelial interactions following coronary artery bypass surgery with cardiopulmonary bypass. DESIGN Double blind crossover study. Experiments on polymorphonuclear cells (neutrophils) were done at the end of cardiopulmonary bypass and one hour postoperatively. Endothelial P-selectin expression and neutrop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of extra-corporeal technology
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2017